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Abstract

Nobody knows how language works, but many theories abound. Transformers are a class
of neural network that process language automatically with more success than alternatives, both
those based on neural computations and those that rely on other (e.g. more symbolic) mechanisms.
Here, I highlight direct connections between the transformer architecture and certain theoretical
perspectives on language. The empirical success of transformers relative to alternative models
provides circumstantial evidence that the linguistic approaches that transformers embody should
be, at least, evaluated with greater scrutiny by the linguistics community and, at best, considered
to be the currently best available theories.

1 Word embeddings and lexical prototypes

Among the many unknown things about language is why we give specific names to particular objects
or categories in the world around us. Brown (1958) discussed this question at length, noting that
adult speakers of a language typically converge on the names that they give to common objects or
categories. Building on this work, Rosch and Lloyd (1978) proposed that many semantic domains
have clear basic level categories, such as apple, fish or knife (See Fig 1 (a) for an example). Basic level
categories (and their corresponding names) can be more easily learned by infants than their subordinate
(Granny Smith, salmon, cleaver) or superordiate (food, animal, tool) categories. Rosch’s work led to
the popularisation of the idea that words or concepts can have a prototypical meaning. A given instance
of a word might sit closer or further from that prototype, depending on the context, and (analogously)
different members of a category might sit closer or further from the category’s prototypical instance.

In aiming to connect transformers to theories of human language processing, I propose that, inside
a trained transformer, a word (or word piece)’s ‘embedding’ (input) weights should be thought of as
reflecting that word (or category)’s prototypical meaning. These weights are activated if and only if a
model observes a specific word, word-piece of category name.

While it may or may not be a new idea to connect word(piece) embeddings in neural networks
to Rosch’s notion of prototype, the idea of representing a word’s most typical meaning according to
the average of the contexts in which it appears across a text corpus dates at least to Cordier (1965).
Later, Miikkulainen and Dyer (1991) showed how such a ‘distrbuted lexicon’ could emerge naturally
in neural language model. As computer hardware developed, Collobert and Weston (2008) proposed
that, with a large enough span of words (‘vocabulary’) these sort of distributed lexical representations
could be used to build unified architectures for general purpose language processing. See Fig 1 (b) for
an illustration)

2 Contextualised word meanings

Unfortunately for those looking for easy solutions, words almost never occur in isolation linguistic or
otherwise. In a transformer, a better proxy for a word’s contextualised (or ‘constructed’) meaning
would be the activations computed after (at least one) of the model’s self-attention layers. After the
first transformer layer, these activations should capture the ‘merger’ of a word’s typical meaning with
the prototypical meanings of surrounding words. In other words, a transformer should by default
continually update a word’s prototypical meaning in order to better estimate its (presumably more
appropriate) contextual meaning.
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Figure 1: (a) An example of prototype structure for the concept bird taken from Rosch and Lloyd (1978)
A robin is considered by most survey respondents to be a more prototypical bird than is a penguin
or ostrich. (b) A 2D (t-SNE) mapping of high dimensional word embeddings learned by the word2vec
algorithm (Mikolov et al., 2013) trained on a large text corpus. Word embeddings can be uncovered in
the input weights of any trained neural language model. Here, I propose we consider them as proxies
for prototypical meaning. The range of different bird variants depicted in (a) would all be centred
conceptually on the word-concept bird in (b). [(b) adapted from https://nlpforhackers.io/word-embeddings]

To my knowledge, Elman (1990) was the first to analyse the semantics of contextualised word
embeddings in neural networks. Elman trained small recurrent networks on synthetic symbolic data
designed to reflect specific semantic classes, and found that, after some epochs of training, the internal
states of these networks clustered naturally into the designated semantic classes. I.e. the network
was able to infer semantic information like category membership from syntactic patterns in symbolic
text-like input, and to represent this semantic information in internal activations (Fig 2 (d)).

Methods that employ contextualized word embeddings for donwstream NLP tasks recruit more of
a pretrained network’s weights than methods that rely solely on decontextualized word embeddings.
In the modern setting of large (web-scale) datasets and extensive pre-training, Peters et al. (2018)
demonstrated the value added by doing this. They showed that Elman’s method could apply to a LSTM
network trained on a massive text corpora - yielding performance across a range of classification-style
tasks that was superior to methods based solely on decontextualised word embeddings.

3 Contextualised sentence representations

I hope that the previous section calls into question if it is useful to think of a word having an intrinsic,
rather than contextually constructed, meaning (beyond the notion of prototype, at least). This argu-
ment, however – that words do not in themselves carry much meaning – can be equally made about
sentences or any compound linguistic utterance. Like words, sentences are almost always employed in
a specific communicative and/or physical context, and almost never employed in isolation.

The first neural net to capture this idea was the LSTM-based SkipThought model (Kiros et al.,
2015), which trains LSTMs such that their internal state after processing a sentence is optimal for
decoding the subsequent sentence. These ‘final states’ can then be considered as a context-dependent
representation of the sentence in question.

One limitation with SkipThought vectors is that, while they are optimal for capturing contextual
meaning, they may be too contextual, in that their only purpose is to make decoding extra-sentential
content possible. To mitigate this, some colleagues and I worked out enhancements to SkipThought
vectors to imbue sentences with both contextual and more intrinsic meaning. This involved, for
example, using dictionary definitions to align sentence meanings to the meanings that lexicographers
understand words to have. We also used images to ensure that sentence representations contained
specific concrete information about their relevant visual context (Hill et al., 2016).
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Figure 2: Early attempts at building on contextualiseed word representations (c) Miikku-
lainen and Dyer (1991) envisaged a ‘hidden layer’ where the meaning of words in different semantic
and syntactic contexts would be pooled. (d) Elman fed his simple recurrent network sentences and
clustered the resulting internal state at the point immediately following words of interest. The result
was semantic clusters emerging naturally from the syntactic patterns build into his synthetic word-like
input sequences.

While a partial improvement on SkipThought vectors, these intrinsic-contextual sentence represen-
tations were far from perfect. One limitation was the way they were employed; a user must generate
a single vector to provide a dowsntream system with appropriate context, and then train (typically
linear) layers on top of these vectors in order to make predictions across various NLP tasks.1 The
limitation of both SkipThought and our extensions were best expressed by NLP doyen Ray Mooney,
who intuited that it simply shouldn’t be possible to cram the whole meaning of a sentence into a single
vector.

By 2018 BERT (Devlin et al., 2018) had resolved many of these issues. As per Hill et al. (2016),
BERT representations contain both intrinsic meaning, driven by within sentence word prediction, and
extrinsic/contextual meaning via a next-sentence prediction objective. Improving on prior work, BERT
is also built with a (very large) transformer, and trained on more text than models like SkipThought.
Further, BERT makes no commitment about how it should be applied to downstream tasks. There are
cases where BERT’s representations can be computed a-priori from some context and a linear classifier
trained to use those representations. In other cases, however, the whole of BERT can be fine-tuned
for optimal predictions.

One final serendipitous aspect of BERT was that by 2018 it was much easier to demonstrate a
model’s unequivocal superiority over other models, because instead of building a really large table of
results on linear classification tasks and squeezing it into a paper, BERT’s authors could just refer to
GLUE (Wang et al., 2018), a more robust and user-friendly web-based multi-task leaderboard.

See Fig 3 for an illustration of how between 2008 and the present day, NLP systems have come
to rely less on low-level intermediate weight vectors and more on flexible distributions of activations
from general-purpose networks trained on massive web-scale corpora. Ray Mooney should be rightly
impressed by this development.

The final chapter in this tale is of course the GPT family of models (Radford et al., 2019). GPT
training is both within-sentence and across sentences (thanks to increasingly large transformer mem-
ories) so its representations are both intrinsic and contextual. Most crucially, however, GPT models
do not need any task-specific training once (pre)trained on web-scale corpora. They can just be
‘prompted’ by human users, yielding strong performance on benchmarks like GLUE with no changes
to model weights beyond those originally acquired during pretraining.

1At the time, Kyunghyun Cho, Jamie Kiros and I joked about how large and unwieldy the table needed to report
these results had to be - something that made the papers themselves very unwieldy.
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Figure 3: A simplified illustration of the extent to which different LM-based systems rely on generalized
pre-training vs. task-specific tuning. Circa 2008, pre-training only word (prototype) embeddings
(depicted in the darkest shade) was common. Following Peters et al. (2018)
, the computation of meaning in context (illustrated by the next darkest shade of blue) was exploited

directly by downstream systems. Shortly after, applying Devlin et al. (2018), which required
pretraining an entire transformer network, enabled an even wider class of knowledge transfer from

generic text corpora to system-specific tasks. Finally, as of 2019, GPT-tyle approaches Radford et al.
(2019) render pre-training, in some sense at lease, the only game in town. Task-specific behaviour
can be achieved in GPT networks with no task-specific weight updates, and with just a little help

from one’s friends (if they are good at prompting).2

4 Top-down effects, constructions and (whisper it) syntax

In 2015 after working with RNNs for the first time, I made a somewhat brazen statement that syntax
isn’t a thing.3 This meme ruffled some feathers, but I didn’t actually then (and do not actually now)
believe that humans have no expectations about how different words should relate to each other.
Quite the contrary. What I meant in 2015 was that we should think about new ways of inferring such
‘expectations’ (which we could refer to as tendencies or patterns of processing) from actual human
behavioural data (ie. examples of language use in context) rather than by other methods that were
popular at the time.

In 2015, a popular way to derive a syntactic representation involved introspection by trained lin-
guists (at least to the level of PhD graduates), often operating in small cohorts (those who could be
easily recruited by universities). This ‘expert intuition’ approach seemed to me to have two major flaws.
First, it was not clear how to avoid bias among cohorts of highly-trained annotators, many of whom
seemed to be drawn from populations in a small set of universities worldwide. Second, there seemed
to be a vanishing number of cases where systems based on these described intuited representations of
syntax actually led to better performance on any deployed language technology.

I now know (as deep down I did in 2015) that syntax is a thing. As language users, we very often
often expect a sentence to mean something at exactly the time (or very shortly after) we hear that
sentence. Later, sometimes, the meaning we arrive at confounds our expectations. These (realised, or
confounded) expectations show that human populations do indeed have a strong sense of how words
should fit together, and that those expectations are playing a role in our ability to comprehend and
use language as efficiently as we do. Indeed, it is these expectations and/or processing tendencies that
I think we can (in 2023) usefully refer to as syntax.

Transformers are great at syntax, because they operate precisely by inferring patterns between input
word(pieces) in a way that optimally satisfies their objectives. This fact was not lost on the original
developers of the transformer, who included syntactic analyses in the appendix of the seminal Attention

3The correct way to cite this assertion is Kyunghyun Cho; personal communication.
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is All You Need (See Fig 4 for examples). Of course, the syntax learned by a transformer will depend
on its objective – the original analyses focused on syntax for machine translation. Understanding the
syntax that large scale transformers acquire, across the range of tasks and objectives for which they
are trained, in pithy ways that humans can understand, remains a daunting research problem.

Figure 4: As Vaswani et al. (2017) show, it is easy to plot attention patterns from trained Transformers.
However, this alone does not provide us with any nomonological understanding of how transformers
achieve such effective construction of phrasal or sentential meaning, distributed across their many
network components, on such a diverse set of tasks or contexts.

One felicitous correspondence between transformer syntax and human syntax is the propensity for
‘garden path’ behaviour. As humans, sometimes we can only really make sense of a sentence once we
have had some time to think and process it, and perhaps even after re-working it either out-loud or in
our minds. Here are some examples:

• Fruit flies like a banana, time flies like an arrow

• The haystack was necessary because the cloth ripped (Example from Bransford and McCarrell
(1974) - which makes sense only in the context of skydiving)

• They sneezed the foam off the cappuccino (a construction due to Adele Goldberg, recently studied
in the context of BERT (Tayyar Madabushi et al., 2020))

• Foot Faces Arms Body Head (Apocryphal UK newspaper headline built entirely from body parts
– requires knowledge of 1980s politics)

Transformers are great for this sort of processing problem because they contain multiple parallel
attention heads. That means that they can compute a (finite) number of analyses of each input
sentence in their activations, prior to ultimately seeing which one is most useful for satisfying the
ultimate training (or test) objective. Humans, by contrast, often need explanations or additional
information in order to make sense of these sort of cases, as per the annotations I have added in
parentheses.

While humans can and do solve such processing conundrums through external expression and
consultation, they can also avoid this by exploiting what are sometimes called top down effects of
processing. A classic example of top-down processing for language is ‘coercion’ (Goldberg, 2009) -
efficiently fitting new (low-level) input words into pre-minted (higher-level) patterns or structures in
order to optimally make sense of the input as a whole.

At first blush, top-down effects can appear to require processing that feeds back down a language-
processing architecture, whereas transformers are strictly feed forward - they process information
only from bottom (words) to top (output predictions). Nonetheless, a transformer of sufficient depth
can learn to execute top-down-style processing via a sort of ‘recurrence in depth’. The attention
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weights up to layer N of a transformer can be used to compute h hypotheses for the analysis of the
sentence. These can then be directly compared to the unadulterated input (via skip connections)
to see which in retrospect fits best. This exercise in constraint satisfaction seems to me (squinting
somewhat) to be quite analogous to the process of coercion that is so central to Construction-based
Linguistics (Goldberg, 2009)

Indeed, across a large corpus, I see no reason why the most dominant firing patterns that coalesce
in this way (in the first N layers, say, of a transformer) can be considered entirely akin to constructions
- the most common patterns of lexical interactions that we as language users come to expect and work
with when fitting new words into meaningful utterances.

5 Many local dependencies, but no local biases?

One intuitive reason why it is surprising that transformers perform better than recurrent networks on
many language tasks is that we know that language is replete with local dependencies. It is far more
likely that two words are semantically related if they occur in close proximity in some corpus. LSTMs
and RNNs contain an inherent bias to discover such connections, by the limitations of back-propagating
through time (Pascanu et al., 2013).

Transformers, on the other hand, contain no such bias. A transformer will find dependencies
between any two words (within its context window of 4000 words, say) with equal prior probability.4

If language is replete with local dependencies and recurrent nets are well suited for learning about
such dependencies, why do transformers seem to perform so much better in recent language technology
systems?

First, it’s worth noting that the local dependencies noted above are so frequently represented in
the data that perhaps ‘any’ model can learn them given enough text. Any advantage for RNNs having
a local dependency bias may be simply too small to register at the scale we currently tend to model
and evaluate language systems.

Second, perhaps only a model with very little bias against distant dependencies (such as a trans-
former) will be able to pick up on rare, distant connections. After all, these connections are, by
definition, uncommon in the data and therefore hard to learn about. Indeed, our prior work has shown
via direct comparisons between Transformers and LSTMs that the former are better able to ‘fast-learn’
to connect concepts in the past to the current input / context/ topic of conversation (Chan et al.,
2022). And, more subjectively, levels of twitter excitement confirm that it’s when transformers make
unexpected (long-distance) connections that folk get really excited about their behaviour.

6 Conclusions

I have argued that transformers are a good model of language, and that this fact is obvious. But
this does not mean they are obviously perfect models of language. Substantial challenges remain.
Elsewhere, with colleagues, I have set out some of these challenges and potential solutions (McClelland
et al., 2020).

We know that transformer language models assert false facts with the same degree of authority
as they do true information. Fixing this may not be easy, and may require models grounded to a
far greater extent in a world in which notions of truth or falsehood can be slowly acquired and then
expanded upon via robust inference mechanisms. For language-based assistants, we must also solve
the ‘I insulted your mom problem’ - if a human user’s conversation with a transformer-based chatbot
becomes heated or argumentative on a Friday, it’s unlikely to remember or treat you any differently
on a Monday. I’ll leave it to the reader to consider whether or not this myopia is a desirable trait of
existing LLMs.

My principal conclusion however – and the main motivation for writing this note – is to point out
how many elements of transformers are almost uncannily aligned with certain well-known, but not
necessarily well-studied, perspectives on language. I refer particularly (but not exclusively) to those
rooted in Cognitive Linguistics and Construction Grammar. If my intuitions or arguments are correct,
and if folks really are impressed with what current LLMs are doing linguistically (if not socially), then

4This assumes, of course, that no funky tricks like sinusoidal position encodings are used - but strong transformer
performance has been achieved in many cases without these.
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maybe that should tell us something about language and linguistics. Namely that historically the
ideas of Brown, Rosch, Rumelhart, Golberg, McClelland et al. were right, and the views of very many
influential others were wrong. Given how many of the above are still actively and passionately pursuing
research at the interface of AI and language, the next steps for all of us should now be obvious.
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